

# T5830ES System Introduction

Future Powerful & economical flash-WT/FT solution



**Rev 1.2** 

CONFIDENTIAL PRELIMINARY

### T5830 Product Overview



### **T5830 Value Proposition**

#### ■ Fully Optimized, Scalable & Economical Flash Solution

✓ T5800 series (AS-platform) module architecture to enhance ROI with less risk

#### ■ Full Functionality & Flexibility for Flash Test

- ✓ Provides full WT & FT test coverage for LPC-SPI NOR/NAND and Smart cards
- ✓ All I/O architecture with plenty native VIHH resources for maximum flexibilty
- √ 800Mbps sufficient performance in the segment

#### Effective Resource Utilization

- ✓ Test program compatibility: FutureSuite based
- ✓ Seamless platform transition from legacy install base

#### **■** Best CoT Performance

✓ Enable Best COT performance
\*Benchmark: Proved more than 20~50% TTR
& 30% CoT reduction vs. legacy V-series Flash solution





### **T5830ES Configuration**

- Target Applications
  - NOR/NAND/(LPC SPI, FPC), embedded Flash as MCU, SRAM, other NVM
- System Configuration
  - Speed: 800Mbps
  - Max. PE channels: 288full-IO (@1-TOM)
  - ES-MB
  - (Optional) HV-level driver module: 288 channel(@-10 to +30V: VSIM/MVM)
- Parallelism(1-TOM)
  - 72 DUT parallelism @ 4 digital pin (SPI-NOR/NAND)
  - 48 DUT parallelism @ 6 digital pin (SPI-NOR/NAND)
  - 18 DUT parallelism @ 16 digital pin (Typical NAND x8-DQ)

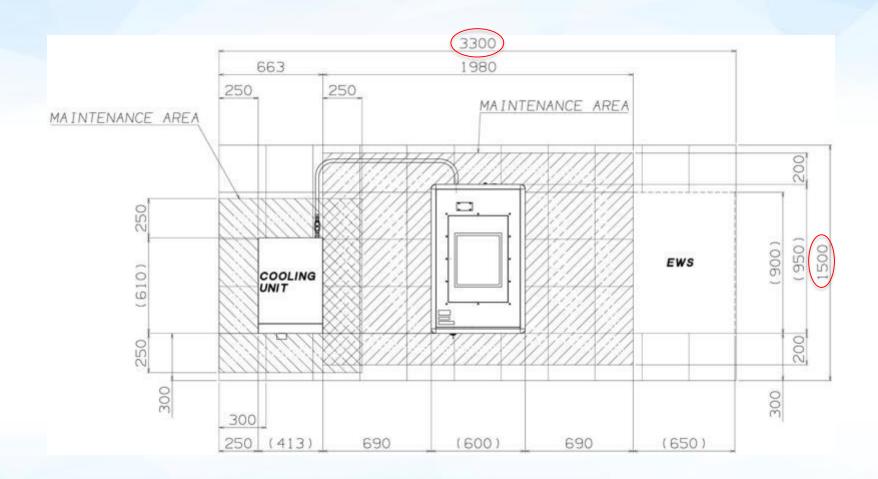


### **T5833ES System Specification**

| ITEM               |            | T5830ES                            |
|--------------------|------------|------------------------------------|
| Max. Frequency     |            | 400MHz/800Mbps                     |
| Accuracy           | OTA        | +/-350ps                           |
|                    | Dr/Cp Skew | 200ps p-p                          |
| Site-CPU           |            | 2                                  |
| ALPG               |            | 6                                  |
| TH<br>Channels     | 10         | 288                                |
|                    | DR         | -                                  |
|                    | LVLDR      | (Option HV-LVLDR -10 to +30v: 288) |
|                    | PPS        | 24(1.2A) x 2 port= 48(600mA)       |
| VIHH               |            | 144<br>-> ( 1 per 2 I/O pins)      |
| Passive Load       |            | 72<br>-> ( 1 per 4 I/O pins)       |
| DC (PMU)           |            | 24                                 |
| Formatter Channels |            | 4810                               |



### High Voltage Level Driver module (Optional)



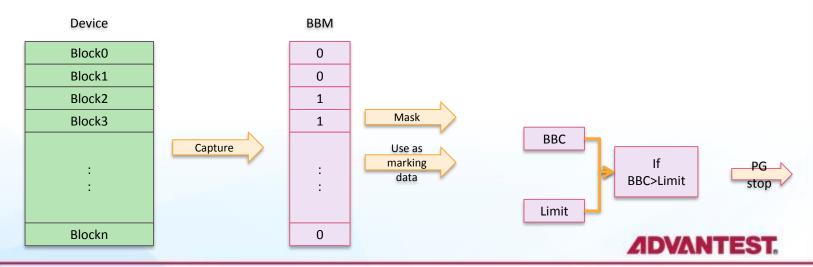

## High Voltage Level Driver Module (Optional)

| ITEM    |                      | HV LVL DR                                   |
|---------|----------------------|---------------------------------------------|
| Channel |                      | 48 Units x 6 branch = 288 output ch/ module |
| VSIM    | Output Voltage       | −10V ~ +30V                                 |
|         | VS Resolution        | 4mV                                         |
|         | Current Measurement  | −80mA ~ +90mA (per Unit)                    |
|         | IM Resolution        | 40uA                                        |
|         | Max. Capacitive load | 0.1 uF<br>(per each 288 output ch)          |
| M∨M     | Voltage Measurement  | −10V ~ +30V                                 |
|         | VM Resolution        | 4mV                                         |



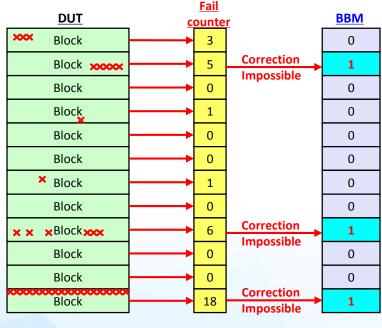
### **ES Floor Plan**






### T5830ES Key Flash functions



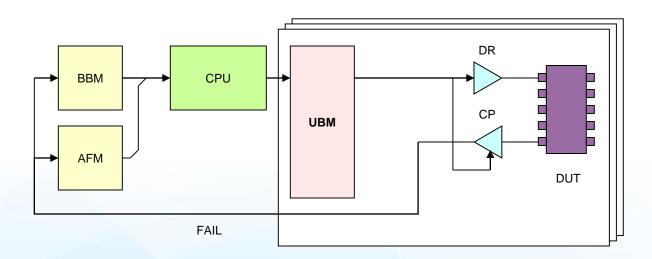

### **BBM-Bad Block Memory**

- Purpose
  - One of fail capture memory.
  - Mainly manages failure of block.
- Use case in NAND testing
  - Easy to know where bad block Address is and the number of bad blocks.
  - If the target block is bad
    - Inhibit logical compare during the test
    - Inhibit program or erase operation
    - Easy bad block marking using this information
    - Stop pattern running if # of bad block exceed the limit.



#### Real time fail count for ECC

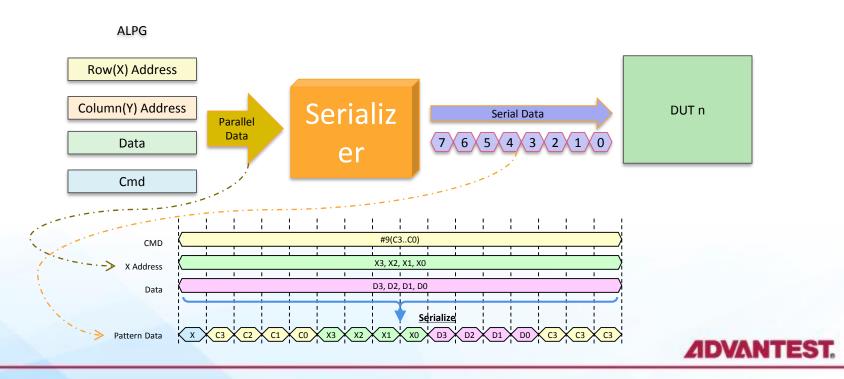
- Purpose
  - Count number of failures in particular region and compare it with expected count during pattern running.
- Use case in NAND testing
  - Easy to know failure in region can be corrected by ECC or not.




4bits ECC



### **UBM – Universal Buffer Memory**


- Purpose
  - Generate DR or CP(expected) pattern for each DUT.
- Use case in NAND testing
  - Write/Read unique data into each devices at the same time
    - Unique Data: ID or bad block marking





### **PDS Memory (Serializer)**

- Purpose
  - Easy to generate serial data from ALPG data (X/Y/data/command)
- Use case in NAND testing
  - Generate serial data for SPI device

